
Supercomputing ‘99

Parallelization Parallelization of a Dynamic Unstructuredof a Dynamic Unstructured
Application using Three Leading ParadigmsApplication using Three Leading Paradigms

Leonid Oliker

NERSC

Lawrence Berkeley National Laboratory
www.nersc.gov/~oliker

Rupak Biswas

MRJ Technology Solutions

NASA Ames Research Center
www.nas.nasa.gov/~rbiswas

Supercomputing ‘99

Motivation and ObjectivesMotivation and Objectives

Real-life computational simulations generally require
irregular data structures and dynamic algorithms

Large-scale parallelism is needed to solve these
problems within a reasonable time frame

Several parallel architectures with distinct
programming methodologies have emerged

Report experience with the parallelization of a
dynamic unstructured mesh adaptation code using
three popular programming paradigms on three
state-of-the-art supercomputers

Supercomputing ‘99

2D Unstructured Mesh Adaptation2D Unstructured Mesh Adaptation

Powerful tool for efficiently solving computational
problems with evolving physical features (shocks,
vortices, shear layers, crack propagation)

Complicated logic and data structures

Difficult to parallelize efficiently
Irregular data access patterns (pointer chasing)

Workload grows/shrinks at runtime (dynamic load balancing)

Three types of element subdivision

Supercomputing ‘99

Parallel Code DevelopmentParallel Code Development

Programming paradigms
Message passing (MPI)

Shared memory (OpenMP-style pragma compiler directives)

Multithreading (Tera compiler directives)

Architectures
Cray T3E SGI Origin2000 Tera MTA

Critical factors
Runtime

Scalability

Programmability

Portability

Memory overhead

Supercomputing ‘99

Test ProblemTest Problem

Computational mesh to simulate flow over airfoil

Mesh geometrically refined 5 levels in specific regions
to better capture fine-scale phenomena

14,605 vertices
28,404 triangles

 488,574 vertices
1,291,834 triangles

Serial Code

6.4 secs on 250 MHz R10K

Supercomputing ‘99

Distributed-Memory ImplementationDistributed-Memory Implementation

512-node T3E (450 MHz DEC Alpha procs)

32-node Origin2000 (250 MHz dual MIPS R10K procs)

Code implemented in MPI within PLUM framework
Initial dual graph used for load balancing adapted meshes

Parallel repartitioning of adapted meshes (ParMeTiS)

Remapping algorithm assigns new partitions to processors

Efficient data movement scheme (predictive & asynchronous)

Three major steps (refinement, repartitioning, remapping)

Overhead
Programming (to maintain consistent D/S for shared objects)

Memory (mostly for bulk communication buffers)

Supercomputing ‘99

INITIALIZATION

Initial Mesh

Partitioning

Mapping

Overview of PLUMOverview of PLUM

Y

Y

N

N

Repartitioning

Reassignment

Remapping

Balanced?

Expensive?

LOAD BALANCER

Refinement

MESH ADAPTOR

Edge Marking

Coarsening

FLOW SOLVER

Supercomputing ‘99

Performance of MPI CodePerformance of MPI Code

More than 32 procs required to outperform serial case

Reasonable scalability for refinement & remapping

Scalable repartitioner would improve performance

Data volume different due to different word sizes
Time (secs) Data Vol (MB)

System P Refine Partition Remap Total Max Total

8 4.53 1.47 12.97 18.97 68.04 286.80
64 0.78 1.49 1.81 4.08 6.88 280.30

160 0.61 1.70 0.69 3.00 4.24 284.41T3E

512 0.14 4.70 0.25 5.09 0.99 310.40

2 13.12 1.30 24.89 39.31 50.11 60.64
8 8.31 1.39 10.23 19.93 30.21 151.75O2K

64 1.41 2.30 1.69 5.40 4.17 132.34

Supercomputing ‘99

Shared-Memory ImplementationShared-Memory Implementation

32-node Origin2000 (250 MHz dual MIPS R10K procs)

Complexities of partitioning & remapping absent
Parallel dynamic loop scheduling for load balance

GRAPH_COLOR strategy (significant overhead)
Use SGI’s native pragma directives to create IRIX threads

Color triangles (new ones on the fly) to form independent sets

All threads process each set to completion, then synchronize

NO_COLOR strategy (too fine grained)
Use low-level locks instead of graph coloring

When thread processes triangle, lock its edges & vertices

Processors idle while waiting for blocked objects

Supercomputing ‘99

GRAPH_COLOR NO_COLOR

P Refine Color Total Total

1 20.8 21.1 41.9 8.2
4 17.5 24.0 41.5 21.1

8 17.0 22.6 39.6 38.4

16 17.8 22.0 39.8 56.8

32 23.5 25.8 49.3 107.0

64 42.9 29.6 72.5 160.9

Performance of Shared-Memory CodePerformance of Shared-Memory Code

Poor performance due to flat memory assumption

System overloaded by false sharing

Page migration unable to remedy problem

Need to consider data locality and cache effects to
improve performance (require partitioning & reordering)

For GRAPH_COLOR

Cache misses
15 M (serial) to
85 M (P=1)

TLB misses
7.3 M (serial) to
53 M (P=1)

Supercomputing ‘99

Multithreaded ImplementationMultithreaded Implementation

8-processor 250 MHz Tera MTA
128 streams/proc, flat hashed memory, full-empty bit for sync

Executes pipelined instruction from different stream at each
clock tick

Dynamically assigns triangles to threads
Implicit load balancing

Low-level synchronization variables ensure adjacent triangles
do not update shared edges or vertices simultaneously

No partitioning, remapping, graph coloring required
Basically, the NO_COLOR strategy

Minimal programming to create multithreaded version

Supercomputing ‘99

Performance of Multithreading CodePerformance of Multithreading Code

Sufficient instruction level parallelism exists to
tolerate memory access overhead and lightweight
synchronization

Number of streams changed via compiler directive

Streams per processor

P 1 40 60 80 100

1 150.1 3.82 2.72 2.22 2.04
2 1.98 1.40 1.15 1.06

4 1.01 0.74 0.64 0.59

6 0.69 0.51 0.43 0.40

8 0.55 0.41 0.37 0.35

Supercomputing ‘99

Schematic of Different ParadigmsSchematic of Different Paradigms

Shared memory MultithreadingDistributed memory

Before and after adaptation (P=2 for distributed memory)

Supercomputing ‘99

Comparison and ConclusionsComparison and Conclusions

Different programming paradigms require varying
numbers of operations and overheads

Multithreaded systems offer tremendous potential for
solving some of the most challenging real-life
problems on parallel computers

Program Best Code Mem Scala- Porta-
Paradigm System Time P Incr Incr bility bility

Serial R10000 6.4 1
MPI T3E 3.0 160 100% 70% Medium High

MPI O2K 5.4 64 100% 70% Medium High

Shared-mem O2K 39.6 8 10% 5% None Medium

Multithreading MTA 0.35 8 2% 7% High* Low

